<table>
<thead>
<tr>
<th>1. Daria placed the numbers (-\frac{4}{7}, 0.58, -0.6 \text{ and } \frac{5}{8}) on the number line. Which of the numbers is furthest from zero?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A -0.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Which fraction equals a repeating decimal?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (\frac{5}{30})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Cole went hiking near his house. The first trail took him 7 miles away from his house. The second trail took him (3\frac{1}{2}) miles closer to his house. The third trail took him (2\frac{2}{5}) miles further away from his house. How many miles from his house was Cole after he finished hiking the third trail?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Less than 116 ft(^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Tomas bought a bottle of shampoo that held 10.5 fluid ounces. He uses (\frac{1}{16}) of the shampoo every time he washes his hair. How many ounces of the shampoo are left after he washes his hair 6 times?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Less than 116 ft(^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. The length of a living room rug is (12\frac{1}{2}) feet, and the width is (10\frac{3}{4}) feet. There is a loveseat that covers (12\frac{1}{2}) square feet of the rug and an entertainment center that covers 6 square feet. What is the area of the rug that can be seen?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Less than 116 ft(^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. On the track team, (\frac{3}{5}) of the members are boys. Of these boys, (\frac{4}{7}) are sixth-graders. Of the sixth-grade boys on the team, (\frac{1}{3}) are runners. What fraction of the track team are sixth-grade boy runners?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Less than 116 ft(^2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. James measured a piece of construction paper to be (6\frac{3}{4}) inches wide and (9\frac{2}{3}) inches long. What is the area of the piece of construction paper in square inches?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Less than 116 ft(^2)</td>
</tr>
</tbody>
</table>

Created by Lance Mangham, 6th grade math, Carroll ISD
Barbequed Lima Beans [makes 10 servings]

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lima Beans</td>
<td>1 1/2 pounds</td>
<td>Ketchup</td>
<td>1 1/2 cups</td>
</tr>
<tr>
<td>Water</td>
<td>5 7/8 cups</td>
<td>Tabasco Sauce</td>
<td>13 drops</td>
</tr>
<tr>
<td>Chopped Onions</td>
<td>2 1/4 cups</td>
<td>Dark corn syrup</td>
<td>5/6 of a cup</td>
</tr>
<tr>
<td>Brown Sugar</td>
<td>3 3/8 cups</td>
<td>Bacon</td>
<td>5/8 of a pound</td>
</tr>
</tbody>
</table>

8. Mr. Underwood accidentally pours 5 1/8 cups of ketchup into the recipe. How much extra ketchup did Mr. Underwood add?

9. If Mr. Mangham makes enough barbequed lima beans to feed 30 people, how much more water did he use than dark corn syrup?

10. Mrs. Bailey loves lima beans and bacon so she doubles the bacon and triples the lima beans. How many total pounds of these two ingredients did she use?

A) 1 1/4
B) 4 1/2
C) 5 3/4
D) 6 1/4

Solve.

11. \(r = -4 \frac{3}{5} - 12 \)
12. \(w = 2 \frac{2}{3} - 3 \frac{5}{6} \)
13. \(z = 10 \frac{7}{8} + -7 \frac{1}{4} \)
14. \(p = -2 \frac{5}{6} \cdot 1 \frac{1}{3} \)
15. \(a = -\frac{8}{15} \cdot -\frac{3}{12} \)
16. \(k = 3 \frac{3}{4} \cdot -\frac{8}{5} \)
17. \(-\frac{1}{3} \div \frac{5}{6} \)
18. \(\frac{3}{4} \div \frac{3}{2} \div \frac{2}{3} \)
Seven Layer Bars
Party Size [60 servings]

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melted Butter</td>
<td>$\frac{10}{4}$ cups</td>
</tr>
<tr>
<td>Flaked Coconut</td>
<td>$\frac{5}{4}$ cups</td>
</tr>
<tr>
<td>Graham Cracker Crumbs</td>
<td>$\frac{5}{3}$ cups</td>
</tr>
<tr>
<td>Chopped Nuts</td>
<td>$\frac{5}{2}$ cups</td>
</tr>
<tr>
<td>Chocolate Chips</td>
<td>$\frac{5}{8}$ cups</td>
</tr>
<tr>
<td>Sweetened Condensed Milk</td>
<td>$\frac{5}{6}$ cups</td>
</tr>
<tr>
<td>Butterscotch Chips</td>
<td>$\frac{5}{3}$ cups</td>
</tr>
</tbody>
</table>

19. Alex makes $\frac{3}{5}$ of the recipe since she only wants 36 servings. How many cups of flaked coconut does she use?

20. Bradley makes $\frac{3}{2}$ times the normal recipe because he wants 150 servings. How many cups of butterscotch does he use?

21. One-half of the chocolate chips in the recipe are mint chocolate chips. If Laura secretly adds another $\frac{7}{16}$ cups of mint chocolate chips, how many total cups of mint chocolate chips are there?

22. Place in order from greatest to least.

\[-2\frac{2}{7}, -1\frac{3}{5}, -1\frac{2}{3}, -2\frac{1}{4} \]

23. For the school carnival, a rectangular soccer field was used for rides and booths. The rides took up $\frac{3}{4}$ of the field. The children’s rides took up $\frac{1}{4}$ of the area used for rides. Draw a picture to the right which shows the fraction of the soccer field that was used for children’s rides.

24. Wendy has 35 tickets for the games at the carnival. She used $\frac{1}{5}$ of the tickets to play the ball-toss game. She then used $\frac{1}{2}$ of the remaining tickets to play the ring-toss game, in which she won 5 more tickets. How many tickets did Wendy have after playing these games?
25. \[\frac{2}{5} \cdot 3\frac{4}{5} \]

Final Answer:

26. In words, what does \(\frac{3}{4} \cdot \frac{2}{7} \) mean?

27. Using the rectangle on the right, create a picture to represent \(\frac{3}{4} \cdot \frac{2}{7} \)

28. Erin has \(1\frac{7}{8} \) pounds of trail mix. She wants to make \(\frac{1}{12} \)-pound bags of the mix for snacks. How many full bags can she make?

<table>
<thead>
<tr>
<th>A</th>
<th>21</th>
<th>B</th>
<th>22</th>
<th>C</th>
<th>23</th>
<th>D</th>
<th>24</th>
</tr>
</thead>
</table>

29. The area of a rug is \(36\frac{1}{4} \) square feet. The length of the rug is \(8\frac{3}{4} \) feet long. What is the width of the rug?

| A | \(4\frac{1}{7} \) | B | \(4\frac{2}{3} \) | C | \(4\frac{11}{12} \) | D | \(27\frac{1}{2} \) |

Created by Lance Mangham, 6th grade math, Carroll ISD
30. Michele has a $1\frac{2}{3}$-pound box of cereal. She wants to make equal servings that completely use all the cereal. Which of these serving amounts would have no leftover cereal?

- A $\frac{1}{12}$ lb
- B $\frac{1}{10}$ lb
- C $\frac{1}{8}$ lb
- D $\frac{1}{5}$ lb

31. Which of the following is equivalent to $\frac{2}{5} \times \frac{3}{8}$?

- A $\frac{3}{8} \div \frac{2}{5}$
- B $\frac{2}{5} \div \frac{3}{8}$
- C $\frac{2}{5} \div \frac{8}{3}$
- D $\frac{5}{2} \div \frac{8}{3}$

32. Brent divided $3\frac{1}{5}$ by a number and got $4\frac{1}{2}$. Which of the following is true about the number he divided by?

- A The number he divided by was negative.
- B The number he divided by was between zero and one.
- C The number he divided by was greater than one.
- D None of the above statements are correct.

For the questions below, choose the one operation is required to answer the following problems (add, subtract, multiply, or divide). The operation must use the numbers given. You do not need to solve the problem or show any work.

<table>
<thead>
<tr>
<th>A = Add</th>
<th>B = Subtract</th>
<th>C = Multiply</th>
<th>D = Divide</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.</td>
<td>Mark and Nathan shared a cookie. Mark ate $\frac{3}{4}$ of the cookie and Nathan ate $\frac{1}{7}$ of the cookie. How much of the cookie did the boys eat together?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>34.</td>
<td>Fred gave $\frac{3}{4}$ of a cookie to Nathan. Nathan ate $\frac{1}{7}$ of the cookie that Fred gave him. What fraction of a whole cookie did Nathan eat?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35.</td>
<td>How many groups of $\frac{2}{8}$ are in 16?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>If Oscar ran $\frac{1}{6}$ of a mile, how much farther does he need to run to reach the $\frac{1}{4}$ mile mark?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37.</td>
<td>Paul found $\frac{1}{2}$ of an Oreo in his lunchbox. He ate $\frac{1}{4}$ of it. How much of an Oreo did Paul eat?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>Ralph watched $\frac{2}{3}$ of the football games on TV last weekend. There were 18 games shown. How many games did Ralph watch?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
39. \[\text{Sam walked } \frac{1}{2} \text{ of a lap and then gave the baton to Tom, who walked } \frac{2}{3} \text{ of a lap. How many laps were walked by Sam and Tom?} \]

40. \[\text{Victor gained } \frac{4}{5} \text{ of a pound. According to Dr. Watson, } \frac{1}{4} \text{ of his weight gain was due to Hostess Twinkies. How much of the weight gain was caused by Twinkies?} \]

41. \[\text{If } \frac{4}{5} \text{ of a candy bar is placed into 8 groups, how much of a candy bar is in each group?} \]

42. \[\text{Alex practices playing the piano for } 2 \frac{1}{2} \text{ hours each week. If Alex practiced for a total of 35 hours, write an expression that could be used to determine the number of weeks he practiced?} \]

CHOCOLATE BIRTHDAY CAKE WITH CHOCOLATE FROSTING – Serves 16

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 pound butter</td>
<td>5 6 cup of cocoa</td>
</tr>
<tr>
<td>2 1/4 cups of sugar</td>
<td>2 1/8 teaspoons baking soda</td>
</tr>
<tr>
<td>2 1/3 cups of boiling water</td>
<td>3 1/6 cups of flour</td>
</tr>
<tr>
<td></td>
<td>2 1/4 teaspoons vanilla</td>
</tr>
</tbody>
</table>

Allie is having a party with some friends. **She needs to make the recipe above for 36 people.**

Allie can’t find her measuring cup, but she does find a utensil called a “whatchamacallit” that measures 1/4 of a cups. How many whatchamacallits does she need to fill to get the correct amounts to **serve all 36 people**?

43. Cocoa

44. Water

45. Sugar

46. Flour

Allie can’t find her teaspoon either, but she does find a utensil called a “whoseymawhat” that measures 3/8 of a teaspoons. How many whoseymawhats does she need to fill to get the correct amounts to **serve all 36 people**?

47. Baking Soda

48. Salt

Created by Lance Mangham, 6th grade math, Carroll ISD
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>49.</td>
<td>In words, what does $\frac{5}{2} \div \frac{3}{4}$ mean?</td>
</tr>
<tr>
<td>50.</td>
<td>Using the space on the right, create a picture to represent $\frac{5}{2} \div \frac{3}{4}$</td>
</tr>
</tbody>
</table>
CLOSE TO HOME

"I'll take a large pizza with half-onion, two-thirds olives, nine-fifteenths mushrooms, five-eighths pepperoni, one-eighth anchovies, and extra cheese on five-ninths of the onion half."

How did you do on your math quiz? I flunked it...but only because I ran out of time.

The worst part, though, was that Susie Derkins won our bet on who'd get the better score. I had to pay her 25 cents.

But get this! I cheated her! I only gave her three dimes! Ha!

I think you'd better study harder.

Oh, now don't you start on me.

Created by Lance Mangham, 6th grade math, Carroll ISD